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ABSTRACT

We consider a brane-world construction which incorporates a �nite region of 
at space, \the
box," surrounded by a region of anti-de Sitter space. This hybrid construction provides a
framework which interpolates between the scenario proposed by Arkani-Hamed, Dimopoulos
and Dvali, and that proposed by Randall and Sundrum. Within this composite framework, we
investigate the e�ects of resonant modes on four-dimensional gravity. We also show that, on a
probe brane in the anti-de Sitter region, there is enhanced production of on-shell nonresonant
modes. We compare our model to some recent attempts to incorporate the Randall-Sundrum
scenario into superstring theory.
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1 Introduction

There has been a renewed interest by the high energy community in the possibility that space-
time may have a dimension larger than four. The essential new concept which sparked this
interest is the notion that only gravitational excitations propagate through the full spacetime,
while all of the observed Standard Model particles are con�ned to a three-brane. Such a scenario
may be motivated by ideas naturally arising in string theory[1, 2]. One of the most exciting
phenomenological implications of these brane-world scenarios is that the fundamental scale of
gravity may be reduced from the four-dimensional Planck scale of 1016 TeV to as little as 1
TeV.

The wave of research exploring these scenarios has moved forward on two seemingly disjoint
fronts. In the original work of Arkani-Hamed et al.[3, 4], there are large extra dimensions,
which may be as big as a fraction of a millimeter. For simplicity, the extra compact dimensions
are usually assumed to be toroidal,1 and then the gravitational 
uctuations have a simple
Fourier mode expansion. The zero-mode in this expansion is interpreted as the massless four-
dimensional graviton responsible for the observed long-range e�ects of gravity.

More recently, Randall and Sundrum[6, 7] proposed a scheme in which a �ve-dimensional
spacetime contains strongly gravitating three-branes which then produce a warped or non-
factorizable geometry. With a particular tuning of the bulk (negative) cosmological constant
and the brane tension, the induced geometry on the three-branes is just 
at four-dimensional
Minkowski space.2 There is also a massless four-dimensional graviton, but its wave function is
localized in the nonfactorizable geometry of the extra dimension. In this construction, the size
of the extra dimension is unconstrained: it could be either very small[6] or very large[7]. This
scenario can also be extended to cases with more than one extra dimension[9].

In this paper, we study a brane setup which interpolates between these two classes of scenar-
ios, with a single extra dimension. Our �ve-dimensional construction contains a nonfactorizable
geometry which is asymptotically anti-de Sitter (AdS), as in the Randall-Sundrum (RS) sce-
nario. However, as in the framework of Arkani-Hamed{Dimopoulos{Dvali (ADD), there is a
completely 
at region of �nite width { \the box" { bounded by three-branes.3 By varying the
relative scales of the 
at box and the AdS regions, this setup interpolates between a limit in
which it reproduces the RS construction and another where it yields the ADD scenario. We
will study the low-energy e�ective theory of four-dimensional gravity that arises on the branes.
In particular, we will focus on the e�ects of \resonant modes," which are metric modes which
have enhanced support inside the box region.

2 Background Geometry

We begin by considering a �ve-dimensional nonfactorizable background geometry whose metric
takes the following form in Poincar�e coordinates:

ds2 = e�2A(y)���dx
�dx� + dy2 : (1)

1Compacti�cations using hyperbolic manifolds were considered in ref. [5].
2One can also induce cosmological geometries on the three-branes by varying these parameters[8].
3An interesting construction based on the opposite hybrid picture, where a �nite AdS region is surrounded

by an asymptotically 
at space, was recently proposed[10]. Whether this yields a viable e�ective theory of
four-dimensional gravity is currently under scrutiny[11].
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For simplicity, we will restrict our attention to geometries (both the background and the metric

uctuations in the following section) which are re
ection symmetric around y = 0. Thus we
are essentially considering a Z2 orbifold (which may be either compact or noncompact). We
will also be interested in the case where the geometry is asymptotically AdS, i.e. for large jyj,

A(y)! kjyj ; (2)

where k is the inverse of the AdS radius of curvature.
The simplest example of a brane setup which produces a background geometry of this type

is to have a number of three-branes with positive tension superimposed at y = 0. We refer to
these branes collectively as the \Planck brane," and we will designate this simple setup as the
RS limit | see below. We consider the �ve-dimensional gravity action

S = Sbulk + Sbrane ; (3)

with Sbulk =
Z
d4x dy

p�g (2M3
5R� �) ;

Sbrane = �
Z
d4x
p�g4 VP ;

which should be considered the leading terms in a low-energy e�ective action. Here, gMN (M;N =
0; : : : 4) is the �ve-dimensional metric, while (g4)�� (�; � = 0; : : : 3) is the induced metric on
the Planck brane. Also, M5, � and VP denote the �ve-dimensional Planck scale, the (nega-
tive) bulk cosmological constant and the (total) brane tension, respectively. Finding a solution
which is Poincar�e invariant in four dimensions requires that the tension VP is tuned relative

to the cosmological constant �. That is, we set VP =
q
24M3

5 j�j, as in [6]. The solution of
the �ve-dimensional Einstein equations in this RS setup is then given by the metric (1), with
A(y) = kjyj, where

k2 = � �

24M3
5

: (4)

This background geometry is simply two AdS regions glued together along the surface y = 0
with the Planck brane supporting the appropriate discontinuity in the extrinsic curvature across
the gluing surface.

Now imagine splitting the Planck brane into two sets and pulling them away symmetrically
from y = 0 to y = �y0. Given a symmetric division of the Planck brane, the tension of each of
the two subsets is VP =2. We also require that the region of the bulk space between the branes
(i.e. with jyj < y0) is in a new vacuum where the bulk cosmological constant vanishes. Then
the three-branes at y = y0 remain 
at with the same tuning of the tension VP given above.
Given the vanishing of � in the small y region, solving Einstein's equations in this part of the
spacetime will yield a slice of 
at �ve-dimensional Minkowski space. The full solution becomes
the metric (1) with

A(y) =
1

2
kjy � y0j+ 1

2
kjy + y0j � ky0 ; (5)

where k has the same value as in eqn. (4). The resulting picture is then a 
at \box" glued
between two AdS regions. Of course, the RS limit is now that in which the box shrinks to zero
size, i.e. y0 ! 0:
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3 Graviton Modes

When linearized metric 
uctuations are included, the geometry takes the form

ds2 = (e�2A(y)��� + h��)dx
�dx� + dy2 : (6)

In the following, we will work in a gauge where @�h�� = h�� = 0. We will not consider the metric

uctuations h55 and h5� (which are pure gauge for the case where y has an in�nite range). It
is useful to de�ne a conformal coordinate z by z � sgn(y)[(ek(jyj�y0)� 1)=k+ y0] when jyj � y0,
and z � y when jyj � y0. Given our background solution (5), the geometry (6) then becomes

ds2 =

(
(��� + h��)dx�dx� + dz2 for jzj � z0

1
(k~z)2

h
(��� + ĥ��)dx�dx� + dz2

i
for jzj � z0

(7)

where z0 = y0, ~z = jzj � z0 + 1=k, and ĥ�� = e2A(z)h�� .
Now solve the linearized Einstein equations for h�� with separation of variables using an

ans�atz of the form: h�� = eip�xe�A(z)=2 m(z)���. Here ��� is a constant polarization tensor.
The four-dimensional pro�le of these solutions is a plane wave with an e�ective four-dimensional
mass: m2 = �p2. Solving the linearized equations is now reduced to a one-dimensional
Schr�odinger problem: �

�1
2
@2z + V (z)

�
 m(z) =

1

2
m2 m(z) ; (8)

where the potential V (z) is given by

V (z) =
15k2

8(kjzj � kz0 + 1)2
�(jzj � z0)� 3k

4
�(jzj � z0) : (9)

With these de�nitions, the natural norm4 for the pro�le in the �fth dimension is simplyR
dz j m(z)j2 = 1.
The solution to eqn. (8) is a combination of plane waves in the box and Bessel functions in

the AdS region:

 m(z) =
�

Bm cosmz for jzj < z0 ;
Nm(k~z)1=2 [Y2(m~z) + Lm J2(m~z)] for jzj > z0 ;

(10)

where ~z is as de�ned below eqn. (7), while Bm, Nm, and Lm are m-dependent coe�cients. Lm

is determined by the jump condition at the Planck brane,

Lm = �Y1(m=k) + Y2(m=k) tan(mz0)

J1(m=k) + J2(m=k) tan(mz0)
; (11)

while Bm is �xed by requiring the  m to be continuous at z0,

Bm cos(mz0) = Nm [Y2(m=k) + Lm J2(m=k)] : (12)

This leaves Nm to be �xed by imposing the appropriate normalization of the pro�le.
We can introduce a second boundary, i.e., a second Z2 orbifold surface, at some �nite z = zc

in the AdS region, by inserting branes of negative tension VN = �VP , as in [6]. In this case,

4This norm is inherited from the standard relativistic or \Klein-Gordon" inner product of the �ve-dimensional
graviton 
uctuations in the given background geometry (1).
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the mass spectrum becomes discrete because a second jump condition must be imposed on the
mode functions at the negative tension branes. The latter provides an independent equation
�xing Lm, which combined with eqn. (11) yields

Y1(m=k) + Y2(m=k) tan(mz0)

J1(m=k) + J2(m=k) tan(mz0)
=
Y1(m�z +m=k)

J1(m�z +m=k)
; (13)

where �z = zc � z0.
If we take �z ! 0, the two sets of branes \annihilate" leaving behind a braneless compact-

i�cation on S1=Z2. This is a smooth limit in our low-energy description. We will refer to this
as the ADD limit. For this limit to be phenomenologically viable, one would have to assume
that there are Standard Model �elds living on the orbifold surfaces, in analogy to the M-theory
scenario proposed in [1]. Alternatively, one could introduce a probe brane (which does not
disturb the background geometry) to support the Standard Model �elds.

In all of the cases that we are considering, there is a normalizable zero-mode:

 0(z) =

(
B0 for jzj < z0 ;

B0 (k~z)
�3=2 for jzj > z0 :

(14)

The normalization condition determines B0:

B0 =

 
k

2kz0 + 1� e�2k�z
!1=2

: (15)

where the last term in the denominator vanishes in the case of an in�nite �fth dimension, i.e.
when �z !1.

The existence of this zero-mode is also evident as follows: One �nds that the �ve-dimensional
metric (1) remains a solution of the �eld equations derived from eqn. (3) when the 
at metric
��� is replaced by a general Ricci-
at metric ~g��(x). That is, the �ve-dimensional equations
of motion are still satis�ed as long as the brane metric satis�es the four-dimensional Einstein
equations R��(~g) = 0. The zero-mode solutions appearing in the linearized calculations above
are the usual gravity waves appearing in a perturbative analysis of these four-dimensional
gravity equations.

Using this general nonlinear ans�atz, we can also calculate the e�ective four-dimensional
Planck scale for observers on the three-branes at z = z0. We simply insert our ans�atz, eqns. (1)
and (5), with ~g��(x) replacing ��� , into the �ve-dimensional action (3). Now integrating over y
leaves an e�ective four-dimensional Einstein action with an overall coe�cient of 2M2

Planck where

M2
Planck =

M3
5

B2
0

=
M3

5

k

�
2kz0 + 1� e�2k�z

�
: (16)

Again, the �nal term in the second factor vanishes for the case of an in�nite �fth dimension.

4 An In�nite Fifth Dimension

First we consider the case of the box embedded in an AdS space without boundary. There is
a continuum spectrum of massive gravity modes. Unlike the zero-mode (14), a unit norm can
not be imposed on these modes because the  m(z) have plane wave behavior asymptotically.
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Instead these modes are given �-function normalization, i.e.
R
 �
m(z) m0(z) dz = �(m � m0).

Comparing to eqn. (10), this implies:

N2
m =

1

2

m

k

1

1 + L2
m

: (17)

The coe�cient Bm is obtained from eqn. (12).
Now the essential question we would like to answer is the extent to which gravity on the

branes at z = z0 is four-dimensional. In particular, we will examine how the gravitational
potential is modi�ed by the massive gravity modes in the bulk. Following [7],5 the gravitational
potential between two test masses, m1 and m2, separated by a distance r on the Planck brane,
takes the form

U(r) = �G4m1m2

r

�
1 +

Z
dm�(m) e�mr

�
: (18)

Here the four-dimensional Newton's constant is de�ned as

G4 � 1

32�M2
Planck

=
1

32�M3
5

k

2kz0 + 1
: (19)

We have also introduced a relative density of states

�(m) � j m(z0)j
2

j 0(z0)j2 (20)

for the massive modes. Now for large distances, the dominant contributions to the integral over
the massive modes will come from m < 1=r. In general, we only consider distances r > 1=k
where these dominant contributions come from m < k. This latter restriction is made because
from the form of the potential (9) in the Schr�odinger equation (8), it is clear that modes with
m >� k will not be suppressed at the Planck brane. The strong coupling of these bulk modes
indicates that we should expect that the approximately four-dimensional character of gravity
on the brane must break down for r < 1=k.

Now if the size of the box is small or comparable to the AdS scale, i.e., kz0 <� 1, it is not
hard to show that the leading corrections to the long-range gravitational potential are in fact
identical to those in the RS limit. One �nds

�(m) ' 1

2

m

k2
(21)

and so is independent of z0. The �nal result for the gravitational potential is

U(r) ' �G4m1m2

r

�
1 +

1

2k2r2

�
: (22)

Hence there is a power law correction to the four-dimensional Newtonian potential, which is
controlled by the AdS scale k.

In the regime of a large box, i.e., kz0 � 1, more interesting behavior is found. In Fig. 1, we
plot Lm and jBmj as a function of mz0 for �xed z0. The �gure illustrates the generic behavior
in this regime. That is, Bm goes through periodic extrema as m increases, while at these m
values Lm is very close to 0. These modes at the extrema of Bm, which have enhanced support
inside the box, are identi�ed as the resonant modes. Numerically, we �nd that these resonances

5See [12] for a more extensive discussion.
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Figure 1: Lm (solid line) and jBmj (dashed line) as functions of mz0. kz0 = 20 is chosen for the
plot, and Bm is rescaled by a factor of 2000.
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persist for relatively small boxes, e.g., kz0 ' 10, but to produce precise analytic results below,
we will restrict our attention to the regime kz0 � 1.

In our long-range or low-energy approximation, we restrict our attention to light modes:
m=k � 1. The condition Lm � 0 for resonant modes then reduces to

tanmz0 ' �m
2k

; (23)

which means that mz0 ' n� for some positive integer n. Near the zero, the tangent function
is essentially linear, so to leading order we can write

tanmz0 ' mz0 � n� (24)

and we �nd

Lm ' 4

�

k3

m3
(x� 2�n) ; (25)

where x � (2kz0 + 1)(m=k). Thus the resonance mass is

mn ' 2�nk

2kz0 + 1
' �n

z0
: (26)

Now near the resonant masses, the value of the wave functions on the Planck brane can be
written as

j m(z0)j2 ' jBmj2 ' jNmY2(m=k)j2 ' 2

�

Q

1 +Q2(x� 2�n)2
; (27)

where

Q � 4

�

 
k

m

!3

: (28)

Note that the extremal value of j m(z0)j2 is proportional to Q, while the width at half-maximum
is �x = 2Q. Hence from eqn. (28), one sees that the peaks in eqn. (27) become higher and
narrower for smaller resonant masses | a feature which can be observed in the plot of jBmj in
Fig. 1. With m=k � 1, Q is large and the expression in eqn. (27) is a good approximation to
2 times a delta function. Hence the correction to the Newtonian potential (18) becomesZ

dm�(m) e�mr ' 2

�

1X
n=1

Z
dx

Q

1 +Q2x2
e�mnr

= 2
1X
n=1

e�mnr ; (29)

where we have treated both Q and m in the exponential as slowly varying functions. We have
also used dm = j 0(z0)j2dx. The sum over n is actually cut o� at n � kz0.

Within our approximations then, the continuum of states around a resonant mass makes
a contribution to the Newtonian potential as though there were a single discrete normalizable
mode with mass m = mn. The total gravitational potential on the Planck brane becomes

U(r) ' �G4m1m2

r

 
1 +

1

2k2r2
+ 2

e�r=re

1 � e�r=re
!
; (30)

where the second term comes from the nonresonant continuum modes, and the third term
comes from summing over the contributions at all of the resonant masses. The e�ective length
scale appearing in this last term is: re ' z0=�. Therefore within the large box regime with
kz0 >> 1, these resonant mode contributions are in fact the leading contributions to the
Newtonian gravitational potential.
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5 A Finite Z2 Orbifold

In the case where a second orbifold surface is introduced at z = zc, the spectrum of the gravity
modes becomes discrete as determined by eqn. (13). Hence the details of the spectrum are
controlled by the three di�erent scales, z0, �z, and 1=k, entering this quantization constraint.

First consider the regime: �z � z0; 1=k. In this case the spacing of the masses is very
small, �m ' �=�z, which can be seen as follows: on the right-hand-side (r-h-s) of eqn. (13),
we can approximate the Bessel functions with their asymptotic plane wave forms to give

Y1(m=k) + Y2(m=k) tan(mz0)

J1(m=k) + J2(m=k) tan(mz0)
' tan(m�z +m=k � 3�=4) : (31)

Now the r-h-s is a rapidly varying function of m compared to the l-h-s. In particular, the r-h-s
varies from �1 to1 as m increases by �=�z. Hence this constraint (31) will be satis�ed once
in every interval n�=�z < m < (n+1)�=�z. With such a tight spacing of the mass spectrum,
the physics is still essentially unchanged from the case with an in�nite �fth dimension discussed
in the previous section. In particular, if we are also in the regime where z0 � 1=k, the modes
in the discrete spectrum satisfying m ' n�=z0 will have enhanced support in the box region.
These resonant modes will then dominate the corrections to the four-dimensional gravitational
potential.

Let's now consider the situation in which the size of the box is much larger than the size of
the AdS space, i.e. z0 � �z � 1=k. For modes with m� k, eqn. (13) gives:

tan(mz0) ' �m
2k
� 1; (32)

thus m � n�=z0 and cos(mz0) � 1. Note that this result is precisely the condition for the
resonances (23) in the case of the in�nite �fth dimension.

With m~z � 1, Y2 dominates the shape of the wave function outside the box. The normal-
ization condition can be written I1 + I2 = 1, where I1 is the contribution from outside of the
box:

I1 ' kN2
m

Z z0+�z

z0
dz ~z jY2(m~z)j2 ' N2

m

16

�2
k4

m4

1

k
; (33)

and I2 is the contribution from inside the box:

I2 ' B2
mz0 ;

' N2
m

16
�2

k4

m4 z0 :
(34)

Since we are considering z0 � 1=k, I2 � I1 and Bm ' 1=
p
z0.

Therefore, �(m) ' 1=2 on the Planck brane. Thus up to a factor of order one, the leading
correction to the gravity potential is the same as the third term in eqn. (30), with the same
e�ective length scale (given the matching between eqns. (23) and (32)). Hence in this regime,
the large box again mimics the situation with one extra 
at dimension of size z0.

6 No Unusually Large Boxes

In the case just described the size z0 of the box cannot be larger than a millimeter without
con
icting with Cavendish type experiments which directly measure the Newtonian potential.
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Now we pause to inquire whether it is possible to weaken this limit, by somehow introducing a
large wave function suppression for the resonant modes.

One obvious strategy is to change the location of our observer in the �fth dimension; to
this end we could con�ne the Standard Model to a probe brane, as in the scenario of Lykken
and Randall[13]. However locating the probe brane in the interior of the box is no help, and
locating it in the interior of the AdS region is no better, since for light modes, Y2 dominates
the wave function and simply tracks the zero-mode. Thus �(m) � 1 still applies.

The di�erence between the modes in eqn. (32) and that of RS is that in the �rst case the
behavior of these resonant modes is dominated by function Y2 in both the small and large z
regions of AdS, while in the RS case,  m is dominated by Y2 when it is close to the Planck
brane, but by J2 when it is far away. The suppression of the massive graviton wave functions
on the Planck brane in the RS limit comes as a balance between the normalization factor,
determined mainly by J2 term, and the behavior of Y2 at the Planck brane.

However, one could imagine another situation where  m is dominated by J2 thoughout the
AdS region. This would cause suppression of the massive graviton wave function on the Planck
brane since J2(m=k) � (m=k)2 which is small for the light modes. We have found that there
indeed exist such modes if one assumes that �z � z0 � 1=k.

If m�z is large enough such that Y1 and J1 are in their asymptotic region6, while m=k � 1
is still satis�ed, the l-h-s of eqn. (13) becomes tan (m�z � 3�

4
). Both sides of eqn. (13) can be

large provided that:

tan (mz0) � �J1(m=k)=J2(m=k) � �4k
m
; (35)

and

tan(m�z � 3�

4
)� 1; (36)

which implies that
mz0 ' �

2 (2n+ 1);
m�z ' �

2 (2l + 1) + 3�
4 ;

(37)

where the integers n and l can be di�erent, depending on the ratio between �z and z0.
The normalization contribution to the wave function from the AdS region takes the following

form for m�z being large (>� 5):

I1 ' N2
mL

2
m

�

k

m
�z: (38)

The normalization contribution from the box gives

I2 ' B2
mz0 '

N2
mL

2
m

4

m2

k2
z0; (39)

where tan(mz0) � �4k=m from the quantization condition has been applied. It is obvious that
in the limit �z � z0 � 1=k, I1 is always much larger than I2 for light modes (m � k), thus
the AdS behavior dominates the normalization.

One can then calculate the ratio j mj2=j 0j2 on the Planck brane,

�(m) ' 2�

64

mz0
k�z

m4

k4
' O(m

5

k5
) : (40)

6
p

tJ1(t) is very close to its asymptotic form
q

2

�
cos (t � 3�

4
) at t � 3, while the small argument behavior

J1(t) � t2=8 is a good approximation with t � 1:2. The �rst few zeros of J1(t) are at t = 3:83; 7.01, 10.17,
13.32, 16.47.
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For these modes there is indeed an enormous suppression at the Planck brane!
Unfortunately, it is not possible to adjust parameters such that all massive modes are

suppressed on the Planck brane. By choosing di�erent z0=�z as implied by eqn. (37), we have
changed the periodicity of the Bessel functions, i.e., the r-h-s of the eqn. (13) as a function
of (mz0) has a periodicity of �z0=�z, while the l-h-s is approximately periodic in (mz0) with
periodicity �. As a result, between two adjacent values mz0 given by eqn. (37) which satisfy
eqn. (13) and yield large Lm, the l-h-s and the r-h-s of eqn. (13) meetmany times, and inevitably
some of these solutions yield modes with small Lm. As we discussed earlier, when Lm is small,
(Lm � (k=m)4), the mode is unsuppressed at the Planck brane.

7 Collider Phenomenology

The typical cross sections for the total production of on-shell massive gravitons on the Planck
brane is given by [3]:

� � 1

M2
Planck

Z E

0
dm �(m) ; (41)

up to dimensionless couplings and numerical factors. Here the integral over the density of states
extends up to some maximum kinematically available energy scale E. We assume for simplicity
an in�nite AdS region, and restrict m=k � 1 over the entire integration region. For a large
box, i.e. kz0 � 1, the leading order contribution to the integral over the density of states comes
from the resonant modes:

Z E

0
dm �(m) =

2

�
Ez0 +O(E=k)3 : (42)

This result of course mimics an ADD scenario with one extra dimension having the size of
z0. Even for a millimeter-size box (the largest allowed by the Cavendish type bounds), the z0
wave function enhancement of the cross section cannot overcome the Planck suppression of the
couplings. Thus if we live on the Planck brane there are no observable collider e�ects from
on-shell production of bulk modes.

One obvious extension of our construction is to change the location of the Standard Model
�elds. Here we can imagine con�ning the Standard Model to a probe three-brane, as in the
scenario of Lykken and Randall[13]. Locating the probe brane inside the box would not seem to
lead to any new interesting physics since, as seen in eqn. (10), the suppression (or enhancement)
of the bulk modes levels o� for jzj < z0. Hence we consider locating the probe brane at some
�nite distance �zp = zp � z0 inside the in�nite AdS region. Here one can pro�t from the AdS
geometry to generate an interesting hierarchy of scales[6]. As shown in [13], the very light
continuum bulk modes which contribute to the Newtonian potential on the brane have wave
functions which simply track the zero-mode. In our case all of the resonant modes also track
the zero-mode, so the complete result for the Newtonian potential on the probe brane is as
given in eqn. (30).

It was also shown in [13] that the continuum bulk modes which are heavier than 1=(k�zp
2)

have wave functions at the probe brane which are dominated by the J2 rather than Y2 behavior.
These modes do not track the zero-mode, and have large wave function enhancements, leading
to potentially observable collider e�ects. This behavior still holds in the case we are considering,
precisely for the nonresonant gravity modes, i.e. the modes which do not have Lm ! 0 and
thus constitute the nonresonant portion of the bulk continuum. The total cross section for
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production of these modes on the probe brane is given by:

� � (2kz0 + 1)
k2

M2
Planck

E6�zp
8 (43)

where the result is presented for k�zp � 1, as well as m=k � 1. In the limit that kz0 ! 0,
this expression reduces to precisely that derived in [13]. However, the factor of (2kz0 + 1) in
eq. (43) provides a relative enhancement for kz0 � 1, i.e., for a large box. The appearance of
this factor can be traced to a suppression of the zero-mode wave function (relative to that of the
continuum bulk modes) in this scenario, as seen in eqns. (14) and (15). The same suppression
then e�ects the de�nition of MPlanck in eqn. (16).

The net result is that the existence of a large box can dramatically enhance the collider
signals on a probe brane in the in�nite AdS region. The enhancement is not due to resonant
mode production (which as we have seen is Planck suppressed), but rather to the enhanced
production of the continuum bulk modes. For example, suppose that k � MPlanck and that
we have a millimeter-sized box. Then kz0 is a huge enhancement factor: kz0 ' 1016. This
would imply that, even with a probe brane cuto� 1=�zp as large as 104 TeV, collider e�ects
are suppressed by no more than E6=(TeV)8. Hence, in the large box scenario, the production
of these bulk modes could be within the reach of collider experiments in the forseeable future.
One might also expect that this enhanced production may have observable astrophysical and
cosmological implications.

8 Discussion

To summarize, we have presented a brane construction which smoothly interpolates between the
physics of the ADD and RS scenarios. Essentially, our �ve-dimensional background geometry
consists of a slice of 
at Minkowski space, \the box," glued between two AdS regions. The
discontinuity in the extrinsic curvature across the gluing surfaces is interpreted in terms of
positive-tension three-branes located at these positions. For the most part in the following
discussion, we will explicitly comment on the case of an in�nite �fth dimension, however, most
of the comments carry over to the case where the �fth dimension is �nite.

If the size of the box is small compared to the AdS scale, i.e., z0 <� 1=k, then the low-
energy physics is essentially the same as in the RS scenario. That is, the coupling of the bulk
gravity modes is still essentially controlled by the AdS scale, and so the corrections to the
gravitational potential (22) have precisely the same power law form as in [7]. Even if z0 � 1=k,
there would essentially be only one scale in the potential (9), and so one should not �nd any
radical departures from the RS scenario.

This small box regime, i.e., z0 <� 1=k, would model the situation of a thick or smooth Planck
brane[14]. That is a construction where one might attempt to realize the RS scenario using a
smooth domain wall solution to replace the in�nitely thin Planck brane. One would expect (at
least naively) that since, in such a scenario, the AdS curvature and the thickness of the brane
would be determined by the same underlying microscopic theory, both of these scales would be
of the same order. Our results in the small box regime then agree with the investigations in
[14], where it was found that thickening the Planck brane produced no signi�cant di�erences
from the low-energy physics of the RS scenario.

In the large box regime, i.e., z0 � 1=k, a new large length scale is introduced and we do
�nd signi�cant changes in the low energy physics. In particular, there are resonant modes with
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enhanced support inside the box, and so with an enhanced coupling to the the three-branes.
Even though there is a continuum of bulk modes with masses near the resonant mass, their net
contribution mimics a single normalizable mode with this resonant mass. Thus the details of
the AdS region are suppressed in this regime, and to leading order in 1=kz0 the brane-boundary
at z = z0 simply acts like an orbifold surface. That is, the leading order corrections to the
Newtonian potential are identical to those as if we were considering a compacti�cation of 
at
�ve-dimensional spacetime on S1=Z2.

Recently, H. Verlinde[15] proposed an interesting way to realize the RS scenario in super-
string theory. This proposal was later elaborated on in [16]. Essentially the �ve-dimensional
AdS geometry arises in the throat geometry near a cluster of D3-branes, while the �ve-form
charge of the D-branes is absorbed by the \topology" of the compacti�cation geometry in which
they are positioned. The Standard Model �elds would live on a probe brane sitting in the AdS
throat, analogous to [13]. Like our \gravity-in-a-box" model, this scenario then has two inde-
pendent scales, the AdS curvature scale 1=k and the size of the compacti�cation manifold L.
Further the latter size must be larger than the AdS scale in order that the throat of the D3-
branes can �t inside this geometry. Hence we expect that our large box scenario may be closely
related to the low-energy physics of Verlinde's construction. In particular then, as in eqn. (16)
with large kz0, the relation between the observed four-dimensional Planck scale and the fun-
damental scale of gravity will be essentially the same as in the standard ADD scenario. This
simple relation arises because the normalization of the graviton zero-mode is dominated by the
integration over the volume of the 
at box, external to the AdS region. As observed in section 7
then, the latter also results in the production rate of continuum bulk gravitons being enhanced.
We expect this enhancement will be a general feature of the superstring constructions, and so
provide interesting phenomenological constraints for these models

It is interesting to consider the generalization of our brane construction to spacetimes with
more than �ve dimensions. The RS scenario was generalized to higher dimensions using in-
tersecting branes in [9]. This discussion was extended to considering both intersecting branes
and di�erent cosmological constants in the distinct regions between the branes [17]. Given
these results, it is clear that there is no obstacle to extending the present scenario to higher
dimensions. One would have a �nite portion of 
at space surrounded by various AdS regions.
If the size of the box is still characterized by a single scale, we expect that much of the previous
discussion would carry over to the present situation. If the box is smaller than the curvature
scale of the surrounding AdS regions, that the low-energy physics would be essentially the same
as in generalized RS construction of [9]. If the size of the box is much bigger than the AdS
scale, there should be resonant modes so that the low-energy theory imitates a 
at space ADD
scenario. We expect that just as the ADD scenarios are more phenomenologically interesting in
more than �ve dimensions, the higher dimensional extensions of our \gravity-in-a-box" model
would yield a richer phenomenology. It may be of interest to examine how to distinguish the
low-energy physics of the ADD scenario from that of a large higher dimensional box. One
interesting possibility for our higher dimensional constructions is that one can engineer a box
with an essentially arbitrary shape in the extra dimensions. In the large box regime, such a
con�guration should give rise to a unique spectrum of masses which would distinguish it from
a conventional ADD scenario.

Acknowledgements

Research by JL and JW was supported by the U.S. Department of Energy Grant DE-AC02-
76CHO3000. Research by RCM was supported by NSERC of Canada and Fonds FCAR du

12



Qu�ebec.

References

[1] P. Horava and E. Witten, Nucl. Phys. B475, 94 (1996) [hep-th/9603142]; Nucl. Phys.
B460, 506 (1996) [hep-th/9510209].

[2] E. Witten, Nucl. Phys. B471, 135 (1996) [hep-th/9602070];
J.D. Lykken, Phys. Rev. D54, 3693 (1996) [hep-th/9603133];
I. Antoniadis, Phys. Lett. B246, 377 (1990).

[3] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B429, 263 (1998) [hep-
ph/9803315]; Phys. Rev. D59, 086004 (1999) [hep-ph/9807344].

[4] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B436, 257
(1998) [hep-ph/9804398].

[5] N. Kaloper, J. March-Russell, G.D. Starkman and M. Trodden, hep-ph/0002001.

[6] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) [hep-ph/9905221].

[7] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999) [hep-th/9906064].

[8] N. Kaloper, Phys. Rev. D60, 123506 (1999) [hep-th/9905210];
T. Nihei, Phys. Lett. B465, 81 (1999) [hep-ph/9905487];
H.B. Kim and H.D. Kim, Phys. Rev. D61, 064003 (2000) [hep-th/9909053].

[9] N. Arkani-Hamed, S. Dimopoulos, G. Dvali and N. Kaloper, Phys. Rev. Lett. 84, 586
(2000) [hep-th/9907209].

[10] R. Gregory, V.A. Rubakov and S.M. Sibiryakov, hep-th/0002072.

[11] C. Csaki, J. Erlich and T.J. Hollowood, hep-th/0002161; Phys. Lett. B481, 107 (2000)
[hep-th/0003020];
G. Dvali, G. Gabadadze and M. Porrati, hep-th/0002190; hep-th/0003054;
R. Gregory, V.A. Rubakov and S.M. Sibiryakov, hep-th/0003045;
C. Csaki, J. Erlich, T.J. Hollowood and J. Terning, hep-th/0003076;
Y.S. Myung and G. Kang, hep-th/0005206;
I.I. Kogan, S. Mouslopoulos, A. Papazoglou and G. G. Ross, hep-th/0006030.

[12] J. Garriga and T. Tanaka, Phys. Rev. Lett. 84, 2778 (2000) [hep-th/9911055];
S.B. Giddings, E. Katz and L. Randall, JHEP 3, 023 (2000) [hep-th/0002091].

[13] J. Lykken and L. Randall, hep-th/9908076.

[14] M. Gremm, Phys. Lett. B478, 434 (2000) [hep-th/9912060];
C. Csaki, J. Erlich, T.J. Hollowood and Y. Shirman, hep-th/0001033.

[15] H. Verlinde, hep-th/9906182.

13

http://xxx.lanl.gov/abs/hep-th/9603142
http://xxx.lanl.gov/abs/hep-th/9510209
http://xxx.lanl.gov/abs/hep-th/9602070
http://xxx.lanl.gov/abs/hep-th/9603133
http://xxx.lanl.gov/abs/hep-ph/9803315
http://xxx.lanl.gov/abs/hep-ph/9803315
http://xxx.lanl.gov/abs/hep-ph/9807344
http://xxx.lanl.gov/abs/hep-ph/9804398
http://xxx.lanl.gov/abs/hep-ph/0002001
http://xxx.lanl.gov/abs/hep-ph/9905221
http://xxx.lanl.gov/abs/hep-th/9906064
http://xxx.lanl.gov/abs/hep-th/9905210
http://xxx.lanl.gov/abs/hep-ph/9905487
http://xxx.lanl.gov/abs/hep-th/9909053
http://xxx.lanl.gov/abs/hep-th/9907209
http://xxx.lanl.gov/abs/hep-th/0002072
http://xxx.lanl.gov/abs/hep-th/0002161
http://xxx.lanl.gov/abs/hep-th/0003020
http://xxx.lanl.gov/abs/hep-th/0002190
http://xxx.lanl.gov/abs/hep-th/0003054
http://xxx.lanl.gov/abs/hep-th/0003045
http://xxx.lanl.gov/abs/hep-th/0003076
http://xxx.lanl.gov/abs/hep-th/0005206
http://xxx.lanl.gov/abs/hep-th/0006030
http://xxx.lanl.gov/abs/hep-th/9911055
http://xxx.lanl.gov/abs/hep-th/0002091
http://xxx.lanl.gov/abs/hep-th/9908076
http://xxx.lanl.gov/abs/hep-th/9912060
http://xxx.lanl.gov/abs/hep-th/0001033
http://xxx.lanl.gov/abs/hep-th/9906182


[16] E. Verlinde and H. Verlinde, JHEP 0005, 034 (2000) [hep-th/9912018];
C.S. Chan, P.L. Paul and H. Verlinde, hep-th/0003236;
H. Verlinde, hep-th/0004003;
B.R. Greene, K. Schalm and G. Shiu, hep-th/0004103.

[17] C. Csaki and Y. Shirman, Phys. Rev. D61, 024008 (2000) [hep-th/9908186];
A.E. Nelson, hep-th/9909001;
S.M. Carroll, S. Hellerman and M. Trodden, hep-th/9911083.

14

http://xxx.lanl.gov/abs/hep-th/9912018
http://xxx.lanl.gov/abs/hep-th/0003236
http://xxx.lanl.gov/abs/hep-th/0004003
http://xxx.lanl.gov/abs/hep-th/0004103
http://xxx.lanl.gov/abs/hep-th/9908186
http://xxx.lanl.gov/abs/hep-th/9909001
http://xxx.lanl.gov/abs/hep-th/9911083

